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We formulate a procedure for calculating the density of states(DOS) from a multicanonical molecular
dynamics(MMD ) simulation. DOS cannot be obtained directly from the result of MMD simulation, because
the Gaussian thermostat that is used in MMD simulation restricts the system to a spherical surface in momen-
tum space. We perform MMD simulation for liquid Ar with Lennard-Jones potentials and evaluate DOS. Some
physical quantities are estimated as a function of temperature from that DOS. The internal energy, entropy, and
Helmholtz free energy are in good agreement with experiment. The quantity related to the fluctuation—the
specific heat at constant volume—does not agree with experiment, which is ascribed to insufficient accuracy of
DOS.
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I. INTRODUCTION

The canonical molecular dynamics(MD) simulation has
been a powerful tool for molecular simulations. The MD
simulation has been applied to many systems to investigate
the thermodynamic equilibrium state. But physically interest-
ing systems generally have considerable freedom which
causes the minimum rich structure in the potential energy
surface. That potential energy structure makes it difficult for
the system to access the entire phase space during the avail-
able simulation time. Thus it is difficult to investigate phase
transitions, folding of protein, and chemical reactions by
computer simulation. In order to overcome this drawback of
the conventional canonical MD and Monte Carlo simulation,
many new simulation techniques have been proposed in re-
cent years[1–14]. These include the simulated annealing
method[1], the histogram method[2,3], the umbrella sam-
pling method[4], the simulated tempering method[5,6], the
entropic sampling method[7], the 1/k-sampling method[8],
the replica exchange method[9,10], Tsallis statistics[11],
and the multicanonical method[12–14]. Among these meth-
ods, the simulated tempering, entropic sampling,
1/k-sampling, and multicanonical methods enable the system
to have access over a wide area of phase space during a
simulation time by considering a nonphysical ensemble. The
aim of these methods is to obtain the density of states(DOS)
or integrated DOS. It has been shown in Ref.[15] that those
four methods are related to each other. Although umbrella
sampling, the replica exchange method, and Tsallis statistics
also consider a nonphysical ensemble to widen the accessible
area of phase space, these methods are not intended to pro-
duce either DOS or integrated DOS. Recently, Wang and
Landau proposed a new sampling method to enable a run-
ning estimate of DOS(DOS is concurrently estimated during
Monte Carlo simulation) and to refine the accuracy of DOS.
[16,17] This improvement has been applied to the Potts
model, the spin glass model, Lennard-Jones fluid, and the
Ising model[18–20]. DOS plays an important role in statis-
tical physics in the estimation of entropy and free energy.
Therefore, the simulation methods that enable the calculation
of DOS are considered to be useful tools to investigate phase
transitions and other interesting phenomena. The multica-

nonical method has been applied in many areas, particularly
to the biomolecule systems(see Ref.[15] and references
therein). Berg and Neuhaus proposed the multicanonical al-
gorithm and they implemented that algorithm in Monte Carlo
simulation[12]. Nakajimaet al. implemented it in MD simu-
lation [14]. In their work, MD simulation is performed by the
canonical MD simulation with a modified Hamiltonian. Also
note that the Gaussian thermostat[21–23] is more suitable
than the Nosé-Hoover thermostat in performing the multica-
nonical MD(MMD ) simulation. However, the Gaussian ther-
mostat restricts the time development of momentum, which
makes it impossible to obtain DOS directly from the simula-
tion result. In this paper, we formulate how to estimate DOS
from the MMD simulation result. DOS is calculated for liq-
uid Ar with the Lennard-Jones potential. The accuracy of the
estimated DOS is verified by calculating the internal energy,
specific heat at constant volume, Helmholtz free energy, and
entropy as a function of temperature. Section II is devoted to
the formulation of how to estimate DOS from the MMD
simulation result. In Sec. III, the model used in this paper is
described. The simulation results and discussions are pre-
sented in Sec. IV.

II. THEORY

In Sec. II A, the MMD algorithm is explained briefly. In
Sec. II B, by assuming the functional form of the Hamil-
tonian and the kinetic energy, the integration in the definition
of DOS is partially carried out. And in Sec. II C we formu-
late how to estimate DOS from MMD simulation.

A. Multicanonical molecular dynamics simulation

The multicanonical algorithm was originally applied to
the MD method by Nakajimaet al. [14]. A brief explanation
of the MMD method is given here. Suppose a system con-
tainsN identical particles. We may write the Hamiltonian of
the system with a set of coordinatesr =sr1,r2, . . . ,rNd and
momentap=sp1,p2, . . . ,pNd asHsr ,pd. In MMD simulation,
the probability density is supposed to be
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rsr,pd ~ expf− Wsr,pdg, s1d

whereWsr ,pd depends onr andp only through Hamiltonian
Hsr ,pd. In this ensemble, the probability distribution of en-
ergy is written as

PsEd =
1

Z E d„Hsr,pd − E…rsr,pddG, s2d

=
1

ZnsEd expf− WsEdg, s3d

whereZ is the partition function,nsEd is the DOS, and the
integral is carried out over the entire phase space. IfPsEd is
constant,

PsEd = const, s4d

thenWsEd=ln nsEd except for the constant term −lnPsEdZ.
In practical simulations, Eq.(4) is satisfied within a certain
energy region. This energy region is determined according to
what one is interested in. The purpose of MMD simulation is
to obtainWsEd by MD simulations. If we write Eq.(3) as

PsEd =
1

ZnsEd expS−
HsEd
kBT

D , s5d

it can be regarded as a canonical ensemble for a system with
a modified HamiltonianH at a given temperatureT. kB in
Eq. (5) is the Boltzmann constant.T is just a parameter to
mimic the canonical simulation. AlthoughH is required be-
fore performing the MMD simulation, it is not knowna pri-
ori. So we first approximateH from the result of conven-
tional canonical MD simulation of the original system. DOS
is approximately obtained as

nsEd = ZPsEd expS E

kBT
D . s6d

Taking the logarithm of Eq.(6), HsEd is approximately ob-
tained as

HsEd = E + kBT ln PsEd, s7d

where the term lnZ is neglected because it is independent of
E. By performing the canonical MD simulation on the modi-
fied system, we obtain the energy probability distribution,
PsEd. If PsEd does not satisfy Eq.(4) during the specified
energy region,HsEd is renewed as

HnewsEd = HoldsEd + kBT ln PsEd s8d

and another canonical MD simulation is performed. This
procedure is iterated until Eq.(4) is satisfied over the speci-
fied energy region. DOS is evaluated byHsEd as

nsEd = ZPsEd expSHsEd
kBT

D . s9d

Once DOS is obtained, the canonical distribution at any tem-
peratureT is generated by the reweighting technique as

PsEd ~ nsEd expS−
E

kBTD . s10d

The prefix “multi-” signifies that the MMD simulation en-
ables us to obtain probability distributions at any tempera-
ture.

B. Density of states

The definition of DOS is

nsEd =E d„Hsr,pd − E…dG, s11d

where the integral is carried out over the entire phase space.
Suppose the Hamiltonian is separable into the kinetic energy
and potential energy as

Hsr,pd = Kspd + Usrd, s12d

Kspd = o
i=1

N
pi

2

2m
, s13d

wherem is the particle mass andN is the number of par-
ticles. Then Eq.(11) can be rewritten as

nsEd =E
0

E−Umin E d„Hsr,pd − E…d„Kspd − K…dGdK,

s14d

=E
0

E−Umin E d„Usrd − fE − Kspdg…

3 d„Kspd − K…dGdK, s15d

whereUmin is the minimum value ofUsrd. By carrying out
the integration over momentum space, one obtains

nsEd = SNE
Umin

E

sE − Uds3N/2d−1ñsUddU, s16d

ñsUd =E d„Usrd − U…dr3N, s17d

where SN=s2mpd3N/2/Gs3N/2d, U=E−K, and Gsxd is the
Gamma function. In Eq.(17), ñsUd is the partial DOS, which
is calculated by the integration over conformational space.

C. DOS estimation from MMD simulation

As described in Ref.[14], we adopt the Gaussian thermo-
stat [21–23] to keep the temperature constant in performing
the MMD simulation. The kinetic energyKspd is fixed at the
specific valueK0=fs3N−1d /2gkBT0 during the simulation. It
has been shown in Ref.[23] that the probability density of a
Gaussian thermostat becomes

rsr,pd ~ d„Kspd − K0… expS−
Usrd
kBT0

D , s18d

where the Hamiltonian is assumed to be separable into ki-
netic energyKspd and potential energyUsrd. The modified
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Hamiltonian,HsEd, is also assumed to be a sum of kinetic
energy and potential energy such as

Hsr,pd = Kspd + Fsrd = Kspd + Usrd + kBT ln PsUd.

s19d

Because of the restriction on the kinetic energy, the addi-
tional term in the Hamiltonian, the third term of Eq.(19), can
be regarded as a modification of the potential energy. Thus
the probability distribution in MMD simulation becomes

rsr,pd ~ d„Kspd − K0… expS−
Fsrd
kBT0

D . s20d

The energy probability distribution,PsEd, becomes equiva-
lent to the probability distribution of potential energy,PsUd.
PsUd is obtained by substituting Eq.(20) into Eq. (2) and
carrying out the integration over the momentum space as
follows:

PsUd =
1

Z expS−
FsUd
kBT0

DñsUd, s21d

whereFsUd denotesFsrd at r =r0 in which Usr0d=U, andZ
is determined by the normalization ofPsUd. The condition of
Eq. (4) is changed as

PsUd = const, s22d

and the procedure of MMD simulation is also changed as
follows.

(i) Performing canonical MD simulation for the system of
potential energyFsUd [at first timeFsUd=U].

(ii ) RenewingFsUd as

FnewsUd = FoldsUd + kBT ln PsUd, s23d

and go back to(i) until Eq. (22) is satisfied over the specified
energy region.

(iii ) EvaluatingñsUd by

ñsUd = ZPsUd expSFnewsUd
kBT

D . s24d

Even if Eq.(22) is satisfied,nsEd is not obtained yet. The
Gaussian thermostat restricts the accessible momentum
space to a spherical surface ofoispi

2/2md=fs3N−1d /2gkBT0.
Hence in order to getnsEd from the MMD simulation,ñsUd
should be substituted into Eq.(16) and integration carried
out with U. Then we get the DOS as

nsEd = CNE
Umin

E

sE − Uds3N/2d−1 expSFsUd
kBT0

DdU, s25d

where CN=SNPsUdZ. When Eq.(22) is satisfied over the
specified energy region, the value ofPsUd is approximately
1/DU, where DU is the width of the energy region.DU
depends on how many MMD iterations are performed, but it
is independent of both the kinetic energy and the potential
energy.Z is also independent ofU because the dependence
of ñsUd on U is completely described byFsUd. Therefore,
both PsUd andZ can be taken out of the integral.

III. MODEL AND METHODS

We perform MMD simulation for liquid Ar with the
Lennard-Jones potential,

Usrd = o
i=1

N

o
j.i

N

4«HS s

ur i − r ju
D12

− S s

ur i − r ju
D6J , s26d

where N=500 and the potential parameters are« /kB
=120 K ands=3.4 Å [24]. All particles are arranged in a
cubic box to which the periodic boundary condition is ap-
plied. The density is set to 1.33 g/cm3. As pointed out in
Sec. II C, the Gaussian thermostat[21–23] is used for tem-
perature control. The integration of the equation of motion is
performed by the velocity Verlet[25] method with a time
stepdt=0.1 fs. Although thisdt is very short, by choosing
this value, temperature is kept constant within the accuracy
,10−5 K. In performing the MMD simulation, the force on
each particle is modified according to the modification of the
potential energy, such that

Fi = S1 + kBT
d

dU
ln PsUdDf− ¹iUsrdg. s27d

According to the logarithmic derivative ofPsUd, the multi-
plier enhances or suppresses the force. As pointed out in Ref.
[14], this multiplier is uncongenial to the temperature fluc-
tuation in the Nosé-Hoover thermostat. Too large a multiplier
tends to corrupt the simulation, because it is equivalent to
increasing the time step. In order to avoid this kind of cor-
ruption, we recommend adoption of a shortdt. In Eq. (27),
the logarithmic derivative ofPsUd is required in calculating
the force. Many other researchers have estimated this deriva-
tive by fitting the energy histogram to a polynomial inU and
differentiating it. The fitting is performed over a selected
energy region. However, when we perform the MMD simu-
lation, we cannot neglect the possibility of an energy state
appearing which is outside that selected energy region. Such
a situation frequently occurs because the MMD simulation
enhances the system to access an energy state that is outside
the accessible area during the previous simulation. In this
paper, we use the same method described in Ref.[26]. PsUd
is approximated by a Lorenzian sum as follows:

PsUd =
1

M
o
n=0

nU

hsUnd
1

p

1

1 +SUn − U

s
D2 , s28d

where hsUnd is the energy histogram sampled atUn=U0

+ndU, rangingn=0,1, . . . ,nU andM =onhsUnddU. Then the
analytical functional form ofdP /dU can be obtained by dif-
ferentiating Eq.(28). In Eq. (28), s is an adjustable param-
eter, which is set to bes=dU in this present work. To be
strict, the normalization factor 1/p in Eq. (28) must be
1/fsp /2d−u0g, with tanu0=sUmin−Und /s as Umin is the
minimum of potential energy. In this work,u0 is approxi-
mated to −p /2, because we assume that the accessible range
of potential energy is sufficiently larger thanUmin. In Refs.
[18–20], the energy states that are outside the specified en-
ergy region are rejected in order to refine the efficiency of
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simulation and the accuracy of DOS. It is impossible to re-
ject any state that appears during the MD simulation because
all states are the solution of the equation of motion. If we
have enough information about the phase space or conforma-
tional space for the system under consideration, it is possible
to suppress the appearance of the energy state outside the
specified energy region by controlling the multiplier on the
force. However, in general, we do not know details of the
system. We cannot eliminate the possibility that the states
corresponding to the specified energy region are scattered in
the whole phase space and energy barriers higher than the
maximum energy of the specified energy region lie between
them. Thus care must be taken to suppress the energy region.
In the present work, we neither control the multiplier on
force nor restrict the energy region.

IV. RESULTS AND DISCUSSIONS

We perform the MMD simulation at three different tem-
peratures(T=100 K, 120 K, and 140 K). All three tempera-

tures are below the critical temperature of Ar,Tc,150 K.
The densitys1.33 g/cm3d is chosen to obtain the liquid state.
For each temperature, we first perform the conventional ca-
nonical MD simulation with 4 million steps to prepare initial
ñsUd. After that, we iterate the MMD simulation 14 times
with 4 million steps each and in the last two iterations
20 million steps each. Consequently, we perform 16 MMD
iterations for each temperature. After 16 MMD iterations at
T=140 K, the energy region covered byPsUd includes all
the energy states that appear in the conventional canonical
MD simulation atT=100 K. The energy region covered by
PsUd at T=100 and 120 K also includes the energy states
that appear in the conventional canonical MD simulation at
T=100, 120, and 140 K. We expect these MMD results to
reproduce the canonical distribution within the temperature
range 100–140 K. The equilibration of each simulation is
checked by the velocity autocorrelation function. Figure 1
shows the probability distribution ofU from the conven-
tional canonical MD simulation atT=140 K and MMD
simulations after 16 iterations. This figure indicates that
compared to the conventional canonical MD simulation, the
MMD simulation enables the system to access a wide energy
region during a single simulation. For each temperature,
PsUd acquires a flat structure over the energy region
−1.1,U,−0.85 for T=140 K, −1.1,U,−0.9 for 120 K,
and −1.1,U,−0.95 for 100 K. By carrying the MMD it-
eration further, we expected that the energy range covered by

FIG. 1. The probability distribution of potential energy obtained
by the conventional canonical MD simulation atT=140 K and the
MMD simulation atT=140 K (solid line), 120 K (dashed line), and
100 K (broken line) after 16 MMD iterations.

FIG. 2. lnñsUd from the results of 16 MMD iterations forT
=140 K (solid line), 120 K (dashed line), and 100 K(broken line),
respectively. The inset shows the difference in lnñsUd between 140
and 120 K(solid line), 140 and 100 K(dashed line), and 120 and
100 K (broken line). The definition ofd is Eq. (29).

FIG. 3. (a) DOS estimated from the MMD simulation results at
T=140 K (solid line), 120 K (dashed line), and 100 K (broken
line), respectively. The lower panel(b) is obtained from the upper
panel(a) by slidingT=120 K and 100 K lines in the vertical direc-
tion. The inset shows the difference in DOS between 140 and
120 K (solid line), 140 and 100 K(dashed line), and 120 and 100 K
(broken line). d is estimated by Eq.(29) by replacingñsUd with
nsEd.
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the simulation will be increased. While some peak structures
are recognized inPsUd for each temperature, they disappear
with continuing MMD iteration. If the MMD iteration is car-
ried further, an extra force originating from those peaks acts
on each particle through Eq.(19). Figure 2 shows
FsUd /kBT~ ln ñsUd. Each of the three curves corresponds to
ln ñsUd at T=140 K, 120 K, and 100 K, respectively. The
curves are not coincident. But this discrepancy can be ig-
nored because it is ascribed to the omission of the term lnZ
in every iteration process on account of its being independent
of U. If we vertically slide a curve, any curve coincides with
others during the energy range in which the flat area ofPsUd
overlaps. During that energy range, the difference in lnñsUd
between two different temperaturesT andT8 is d,0.005 for
sT,T8d=s140,120d, ,0.003 for (140, 100), and,0.004 for
(120, 100). d is estimated by

d =
ln ñTsUd − ln ñT8sUd

kln ñTsUd − ln ñT8sUdl
− 1, s29d

where the denominator of the first term is the average over
the energy range in whichPsUd at T and T8 overlap. Note
that both edges of lnñsUd are straight lines. This is because
of the termU /kBT in Eq. (19). It means that if lnñsUd is a
straight line with a gradient 1/kBT during some energy area,
the energy state within that area never appeared during the
MMD simulation. Thus in calculating DOS, both edges of
ñsUd must be neglected. The important result of MMD simu-
lation is the difference of lnñsUd from that straight line. The
shape of each curve represents the density of equipotential
states in the conformational space. AlthoughPsUd has many
peaks, all three curves of lnñsUd have a smooth shape. DOS
is evaluated from theseñsUd as shown in the upper panel of

Fig. 3. As was the case in Fig. 2, no curves are coincident.
This discrepancy is also ascribed to the omission of the term
ln CN. By sliding in the vertical direction, any curve can
coincide with others as shown in the lower panel of Fig 3. In
this figure, all three curves coincide very well between the
energy region −0.9,E,−0.5 Ry. The error in DOS be-
tween two different temperatures is also estimated by Eq.
(29) by replacingñsUd with nsEd as d,0.002 for sT,T8d
=s140,120d, ,0.003 for (140, 100), and ,0.006 for (120,
100). The denominator is evaluated duringf−0.9,−0.4g for
sT,T8d=s140,120d andf−0.9,−0.5g for (140, 100) and(120,
100). Due to omission of the term lnZ and lnCN, it is im-
possible to estimate the absolute value of DOS from the
MMD simulation results. However, they are sufficient to es-
timate the relative value of DOS for any different energy
states over that energy region. By expressing the true DOS as
NsEd, the present DOS,nsEd, can be expressed as

NsEd = znsEd, s30d

wherez is a constant. The internal energy and the specific
heat at constant volume can be expressed exactly bynsEd.
On the other hand, Helmholtz free energy and entropy cannot
be expressed in terms of uncertainty ofz as follows.

(i) Internal energy,

kEl =
E ENsEde−bEdE

E NsEde−bEdE

=
E EnsEde−bEdE

E nsEde−bEdE

.

(ii ) Specific heat at constant volume,

FIG. 4. Temperature dependence of(a) internal energykEl, (b) specific heat at constant volumeCv, (c) entropyS, and(d) Helmholtz free
energyF /T. In each figure, the solid line is the MMD simulation result withT=140 K and3 is the experimental data from NIST[27]. For
kEl, Cv, andF /T, the result of MMD is equated to the experiment atT=100 K.
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Cv =
1

kBT2skE2l − kEl2d.

(iii ) Helmholtz free energy,

F

T
= − kB ln E NsEde−bEdE

= − kB ln E nsEde−bEdE− kB ln z.

(iv) Entropy,

S=
kEl − F

T
.

In these expressions,b=1/kBT. These four quantities are
evaluated as a function of temperature and shown in Fig. 4
by usingnsEd obtained from the result of MMD simulation
at T=140 K. In those figures, the results are compared with
experimental data from NIST[27]. The temperature range of
Fig. 4 is chosen according to the energy range where Eq.
(22) is satisfied in the MMD simulation atT=140 K. The
discrepancy between the MMD result and experimental data
is large below 100 K and over 150 K. The internal energy
agrees well with experiment except for the difference in en-
ergy origin. The entropy and Helmholtz free energy also
agree with experiment except for the difference in the posi-
tion of origin and the uncertainty ofz. In spite of the good
agreement of the internal energy, the specific heat at constant
volume does not agree with experiment. If the probability
distribution of energy has a unimodal structure, the internal
energy is approximated by the peak position of the distribu-
tion. On the other hand, the specific heat at constant volume
depends on its variance. It is affected strongly by the shape
of the probability distribution, much more than the internal
energy. The canonical distribution of energy is shown in Fig.
5 at some temperatures between 100 K and 150 K. They are
estimated by multiplyingnsEd and the Boltzmann factor[see
Eq. (10)] and normalizing it to 1. The shape of the canonical
distribution is significantly different from the result of MMD
simulation and conventional canonical MD simulation ex-
cept for the peak position. The reason for the disagreement
of Cv cannot be recognized in the canonical distribution.
However, it must be ascribed to the inaccuracy of DOS.

In summary, the original MMD simulation proposed by
Nakajima et al. [14] is not enough to calculate DOS by

means of the Gaussian thermostat. That thermostat restricts
the momenta onto a spherical surface of 3N dimensions with
radiusÎfs3N−1d /2gkBT. The formalism of how to calculate
DOS by the MMD simulation is established if the Hamil-
tonian can be expressed as a sum of the kinetic energy and
potential energy. We estimate DOS and some physical quan-
tities as a function of temperature for liquid Ar. It is shown
that the calculated DOS is independent of the parameterT,
and the accuracy of the DOS is sufficient to estimate the
statistically averaged value. The internal energy, entropy, and
Helmholtz free energy, which are calculated by the statistical
average, are in good agreement with experiment. On the
other hand, the specific heat at constant volume, which is
related to the fluctuation of energy, is in disagreement with
experiment. In the MMD simulation, the accuracy of DOS
can be improved by flattening the distribution. The flat dis-
tribution obtained in our simulation is not very accurate for
estimating the fluctuation. The accuracy of the DOS can be
checked byd. The independence ofñsUd from the parameter
T indicates the system accesses a sufficiently wide area in
phase space during the simulation. But we did not systemati-
cally check the flatness of the distribution during the simu-
lation. In MD simulation, we need to calculate the force.
Hence the criterion proposed in Refs.[18–20] is not appli-
cable. In order to refine the accuracy of the DOS in the
MMD method, some criterion including how to estimate
force is required.
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